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J. Phys. A: Math. Gen. 13 (1980) 3419-3428. Printzd in Great Britain 

The tc/ (0) problem for charmonium Hamiltonians 

J Killingbeck and S Galicia 
Physics Department, University of Hull, Hull HU6 7RX, UK 

Received 6 May 1980 

Abstract. The problem of calculating $(O) for radial Hamiltonians is shown to be reducible 
to a sequence of energy calculations, which can be performed easily by using a pseudo- 
angular momentum term in a numerical integration approach. A first-principles approach 
to s-state hypervirial relations is shown to produce terms not given by the usual commutator 
approach. 

1. Introduction 

When matrix-variational methods are used to estimate the eigenvalues of the one- 
particle Schrodinger equation, it is well known that an error of order 7’ in the energy 
goes with an error of order 7 in the wavefunction. This means that the approximate 
wavefunctions obtained may give fair energy values and yet give poor estimates of 
expectation values such as ( r N ) .  When a local quantity (e.g. the value of the wavefunc- 
tion at some point) is required, it is even less likely that a good value can be obtained 
from a wavefunction which is obtained by a variational calculation of the energy. One 
such local quantity which is non-zero fors states is the square of the wavefunction at the 
origin. This quantity is required in various branches of traditional theory, for example 
in the theory of hyperfine interaction (Young and Uhlenbeck 1930) and in the theory of 
excitons (Cabib et a1 1972). However, it has also played a role in recent non-relativistic 
models of the charmonium system (the bound quark-antiquark pair), since it is required 
when estimating the various decay rates of the charmonium system (Kaushal and 
Muller-Kirsten 1979). 

One model Schrodinger equation which has been widely used (e.g. Eichten et a1 
1975, McCartor 1978) to describe charmonium is of the form 

P 
r -aV2t,b ---t,b +wrM$ = E$ 

with M a  1. The rM term represents a confining potential which prevents direct 
break-up of the system, while the coefficient p gives the size of the ‘gluon’ force, which 
is usually taken to be weak. The coefficient CY depends, of course, on the quark mass, 
and the mass dependence of the eigenfunctions for simple cases has been discussed by 
Leung and Rosner (1979). The three-parameter problem (1) can be transformed to a 
one-parameter perturbed hydrogen atom problem if we introduce the change r + Kr of 
the length scale. If we choose the length scale appropriately we find the scaling 
relationship which indicates how the eigenvalues depend on C Y ,  p and p : 

E(;, 1, A )  =K’E(a ,  P,  CL) (2) 
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with 

K = ( 2 d P )  and A =kK’+’, 

If we make the traditional choice and write the radial function as a product r-lR ( r ) ,  
then the relation (2) shows that it is sufficient for us to study the equation 

- $ D ~ R  + VR =ER (3) 

with 

1 1(1+ 1) 
2 r2  

v = -r-l + A r M  +- - 

and the normalisation condition 

lom R 2  dr = 1. 

(4) 

The centrifugal term in (4) will, of course, not appear for s states, which are the ones of 
interest in connection with the $ ( O )  problem. The function R ( r )  will obey the boundary 
condition R (0) = 0 for the regular solutions which we require; this means that the 
quantity required is actually the slope DR(O), since 

DR = D(r$) = rD$ + $. ( 6 )  

The problem represented by equations (3) and (4) has been studied for the case N = 1 
by various authors (Titchmarsh 1952, Killingbeck 1977, Graffi et a1 1979) and the case 
N = 2 is associated with the theory of the quadratic Zeeman effect (Killingbeck 1979a). 
In the present work we outline a complete procedure for the numerical treatment of the 
problem. This procedure yields eigenvalues, expectation values of type ( r N ) ,  and also 
$’(O) values which are apparently better than those found by previous methods. 

The original contributions contained in this work may be outlined as follows. In § 2 
a generalisation of Trivedi’s (1980) equation is given, and this leads to a family of inner 
product formulae analogous to the better known hypervirial formulae. In 0 3 a method 
of deriving hypervirial relations is devised to obtain s-state terms which are omitted by 
the usual commutator approach: the relations are used in a computation of perturbation 
series without using wavefunctions. In Q 4 a procedure is given which enables +’(O), ( r ) ,  
( r 2 ) ,  etc, to be found using eigenvalue calculations only. Section 5 points out a 
remaining problem which may be amenable to a similar approach. 

2. Direct and indirect methods for @ ( O )  

In their recent work on the $(O) problem, Kaushal and Muller-Kirsten (1979) assert 
that $ ( O )  can only be found if the wavefunction is explicitly normalised. They give a 
lengthy calculation of WKB type for the wavefunction in various regions of space, and 
the resulting $ ( O )  estimate appears to be of low accuracy. As far as we can see, this 
direct approach is not very efficient, and it is better to do a little mathematical 
manipulation to convert the $CO) problem into another form. Thus, if we take the 
Schrodinger equation 

-$D2R + VR =ER, (7) 
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multiply it throughout by a function F( r )  and integrate between 0 and CO, we quickly 
obtain the following result (if FDR = 0 at 00 and R D F  = 0 at 0 and 00): 

m 

F(O)DR(O) = [D’F f 2F(E - V ) ] R  dr. (8) 
0 

If we take the special case F 1= 1 in (8) we obtain an equation equivalent to that of 
Trivedi (1980). Trivedi suggested that if an approximate normalised R is used in the 
integral, and if E is replaced by the variational energy associated with R, then a 
reasonable estimate of DR(0) for the exact eigenfunction can be obtained. For 
example, for the hydrogen atom ground state, use of an energy-optimised Gaussian- 
type trial function in (8) (with F -- 1) gives DR (0) = 1.796, as opposed to the exact value 
2 and the poor value 0.980 obtained by simply substituting r = 0 in the approximate 
function. Equation (8) shows that for the exact R the same DR(0) should result for 
many different choices of F, provided that F(0)  is non-zero. It may be that by using 
various F’s some estimate of the accuracy of the DR(0) value obtained from an 
approximate R can be obtained. Since we prefer another approach we do not pursue 
this point here. We also note that if we make the choice F(r)  = 1 + kf(r) (with f ( 0 )  = 0) 
we must demand that the resulting DR (0) value has no k dependence if R is the exact 
eigenfunction. This leads to the inner product relation 

(D2f!fIR)+2(fl(E- V)R)=O, (9)  

which is somewhat similar in appearance to the hypervirial relation of D 3, but involves 
inner products rather than expectation values. 

While the approach via equation (8) may lead to useful extensions of Trivedi’s 
(1980) work, we stick more closely to an approach involving expectation values. The 
basic relation which we need has been given various derivations (usually involving 
Wronskians) in the literature (Fradkin and Calogero 1966, Froman 1978a), but it can 
be obtained simply by multiplying (3) by DR and integrating between 0 and 00. The 
result is (after an integration by parts on the right-hand side) 

m 

(DR(0))2  = 2 1 R2(D V) dr (10) 
0 

and it involves the expectation value of the quantity D V, i.e. aV/dr.  IJsing (10) we can 
reduce the $(O) problem to that of finding an expectation value. Froman (1978b) used 
(101, but then used a WKB approach to estimate ((D V)). In our approach the chain of 
reasoning is as follows. Wsing (10) we reduce the problem to the ((D V)) problem; we 
then reduce the expectation vaZue problem to a set of eigenvalue problems; we use a 
numerical integration method to solve the eigenvalue problems, and then construct the 
other desired quantities. For the s states of an unperturbed hydrogen atom, with 
V = -r- l  in (31, the expectation value ( r V 2 )  equals 2n-3 ,  n being the principal quantum 
number of the state concerned. The energy eigenvalue equals in-’, so that we have the 
relationship 

$2(0)  = 2((D V)) = 4 dE/dn. (11) 

Even in the case of perturbed Coulomb potentials, (1 1) is often used to give an estimate 
of 4(0), and is called the Fermi-Segr6 formula (Frbman and Froman 1972); we mention 
it because (like our calculation) it relates 1//’(0) io entities arising from an energy 
calculation. However, it has two drawbacks: it involves the estimation of the derivative 
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of a (hypothetical) smooth function E(n) ,  whereas the actual eigenvalues form a 
discrete sequence; also, it is not exact if the perturbation is strong. Both these causes of 
uncertainty render (1 1) unsuitable for accurate work in theoretical calculations, but 
(1 1) allows rough estimates of r//2(0) to be obtained from empirically assigned energies. 

3. The use of hypervirial relations 

The usual way to derive hypervirial relations is to use commutator algebra, starting 
from the idea that a commutator of form [H, XI has zero expectation value for the exact 
eigenstates of the Hamiltonian H. The particular family of operators XN = rND then 
gives equations which relate together the numerical values of the expectation values 
( r N ) .  However, s states have a non-zero value for r//(O), and the simple Dirac operator 
algebra often assumes that operands have zero value or slope at the boundaries of the 
region of space over which any inner products are formed. To be quite sure that we 
allow for this, we have adopted a 'first-principles' approach which is very simple indeed; 
we just work out the integral representing the expectation value of the third derivative 
of a function f(r): 

m 

( (D3f ) )  = R2(D3f) dr. (12) 
0 

We repeatedly integrate (12) by parts, and every time D2R appears we replace it by 
2( V - E)R, from equation (3). A lengthy but straightforward calculation yields the 
result 

f-wDf)(E - VI) = 4(f(D VI) - ((D3fN - 2f(O)(DR (W2, (13) 
which is the usual diagonal hypervirial relation in a simple form, including an s-state 
boundary term which does not appear in the commutator approach. The boundary 
terms arising from the integration are actually four in number and involve products of R 
and DR. However, the only term which survives when we require that R (0) = 0 is the 
one shown in (13), provided, of course, that f(DR)' vanishes at infinity. The particular 
choicef = 1 leads to equation (10) again, so that our approach unifies the derivation of 
(10) with that of the usual hypervirial relations, which follow if we set f = rN in (13). For 
the problem described by equations (3) and (4) the choice f = rN+' gives the result 

8 ( N +  1)E(rN)+4(2N+l)(rN-')+N(NZ-l)(rN-2)=4A(M+2N+2)(rM+N). (14) 

This result enables us to calculate the various (rN) values for higher N from just a few 
basic (rN) values for low N. This cuts down considerably the amount of numerical work 
required; for example, for the case M = 1 (i.e. the potential -r-' + Ar) we only need to 
calculate E and (r) in detail before using (14) to get the values of (r-'), (r3), (r4), etc. For 
general integer M the basic quantities required are E and the ( r N )  up to (r") where 
K = M. For the pure linear potential, V = r, all the (rN) for positive integer N follow if 
E is known. Equation (14) will always allow some expectation values to be found to 
order 7' when E is known to order 7'. 

If we postulate that the energy E and the expectation values ( r ) ,  (r2), etc, are given 
by power series in A ,  then (14) enables us to calculate these series directly, with no 
wavefunctions being involved in the calculation. The details of this calculation were 
described by Killingbeck (1978), who calculated the energy coefficients up to Es by 
hand for the case M = 1. It is possible to devise a program for the CBM Pet 
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minicomputer which calculates the perturbation series up to high order, for specified M 
and for any s state. A second program then applies the algorithm of Wynn (1956) to 
evaluate Pad6 approximants to the perturbation series (for some specified A ) .  Tables 
1-3 show some typical results for this calculation. The [N/N] and [N/N - 11 approxi- 
mants are found to straddle the accurate energy, but only for small A values is the 
calculation of high accuracy. We suspect that for large M the same effect may occur as 
for the perturbed oscillator (Graffi and Grecchi 1978), i.e. the [N/N] and [ N / N  - 13 
Pad6 approximant sequences may not converge to the same limit. Richardson and 
Blankenbecler (1979) have used hypervirial relations in a recursive numerical cal- 
culation of E and the ( x N )  for the one-dimensional Hamiltonian -D2+x4. From their 

Table 1. 1s-state energy perturbation coefficients (V = r-' +A?). 

M 1 2 

-0.5 
1.5 

-1.5 
6.75 

-49.687 5 
480.375 

-5583 
7.455 733 59E04 

-1.114 319 34E06 
1.832 917 15E07 

-3,280 515 88E08 

-0.5 
3.0 

-32.25 
1362.75 

-1.032 808 593E05 
1.147 795 79E07 

-1,719 187 61E09 
3.319 536 lOEll 

2.388 909 28E16 
-8.035 022 9E13 

-8.580 782 6E18 

Table 2. 2s-state energy perturbation coefficients ( V  = -I-' +A?). 

M 1 2 

-0.125 
6.0 

-66.0 
3312 

-2.716 8E05 
2.884 838 4E07 

-35618 442 75E09 
5.124 051 03Ell  

-7.983 581 74E13 
1,346 704 14E16 

-2.433 179 59E18 

-0.125 
42.0 

-14784 
1.992 345 6E07 

-4,5315 056 6E10 
1.4142 186 7E14 

-54758 199 8E17 
2.6668 570 6E21 

-1.5129 857 6E25 
1,0042 786 3E29 

-7.7264 405 2E32 

Table 3. Pad6 approximants for V = -r-' + A r M .  

M State A [5/41 [5/51 

1 Is 0.10 -0.360 899 563 -0.360 900 277 
1 2s 0.01 -0.069 671 275 -0.069 671 614 
2 Is 0.01 -05472 392 041 -0.472 393 160 
2 2s 0.000 3 -0.113 392 947 -0.113 393 085 
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data we can extract the radial equation results E = 2.39364401, (P) = 0.78667270, 
(r’) =10.7156050&, for the V = r4 ground state. Whether their method will work for the 
Hamiltonian (4), and give ( r N )  for N < 0, remains to be established. For large A we shall 
adopt a numerical integration approach. 

For non-s states the use off  = 1 in (14), with the centrifugal term of (4) added to the 
‘raw’ potential V, gives the result 

(ui + 1 y 3 )  = ((Dv)). (15) 

Fradkin and Calogero (1966) have already pointed out that (15) is a quantal analogue of 
the classical balance between the radial force and the centrifugal force. We wish to 
make a further point: if we find that the minimum in the total potential of equation (4) is 
at r = ro (which is the usual Bohr orbit radius), and then suppose that R is concentrated 
around ro, then we obtain (15) as an approximate equality. However, (15) is exact; even 
though it is only a necessary (not a sufficient) condition, it does suggest that the 
‘Bohr-type’ approximation outlined above is probably reasonable. The work of 
Kaushal and Muiler-Kirsten (1979) appears to start from such an approximation, 
although it involves a change of variable to ensure that even the s-state problem ieads to 
an effective potential which has a strong minimum. In this connection we may also note 
that €or a classical one-dimensional periodic motion with associated potential energy 
function V, the following result involving time averages can be derived: 

(16) 

where f ( x )  is an arbitrary smooth function. Equation (16) resembles the quantum- 
mechanical result (13) for non-s states, but has no (D’f) term. The (D’f) term is actually 
of order h2  (where h is Planck’s constant), as can be seen by noting that it arises from the 
kinetic energy operator term in (3) when the traditional commutator approach is used to 
derive (13). 

2((Df)(E - V)>t = ( f (D VI), 

4. Eigenvalue calculsrtions 

Equation (10) shows that the calculation of +’(O> is equivalent to an expectation value 
calculation. As we have explained elsewhere (Killingbeck 1979a), an expectation value 
such as (r”) can be found numerically from a prescription involving energies: 

Provided that we can evaluate the eigenvalues for the perturbed Hamiltonians H f erN 
accurately, equation (17) will allow us to estimate ( r N ) ;  this approach has been tested 
for perturbed oscillator problems (Killingbeck 1980) and works well. The ca!culation 
ha? an internal check in any case, since the stability of the predicted ( r N )  as E varies can 
be tested. To repeat the calculation for many N values would be tedious, but the 
comments in 5 3 show that only a few ( r N )  have to be calculated explicitly; the rest 
follow from the hypervirial relations. 

The final step in the calculation, then, is the eigenvalue calculation. Any method 
which gives accurate results will do, but it turns out (as we shall see below) that the 
simple method of Killingbeck (1977) has features which make it particularly easy to 
apply to the $ ( O )  problem. If a matrix-variational approach is adopted, equation (17) 
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yields the same ( r N )  values as would be found traditionally by directly evaluating ( r N )  
using the approximate eigenvectors. A calculation using numerical integration to find 
the eigenvalues in (17) usually gives better ( r N )  values. The method used by Killing- 
beck (1977), for the problem described by equations ( 3 )  and (4), involves the substitu- 
tion R(r)  = r'+'q5(r). We use this substitution here, but modify the method by intro- 
ducing a function F, which resembles a logarithmic derivative, and is defined by the 
equation 

q5(r + h )  = (1 + h2F(r))q5(r). (18) 
h in (18) is the strip width to be used in the numerical integration. Proceeding then to 
replace D 2  in (18) by its lowest-order finite difference approximation (Killingbeck 
1977), we obtain the following equation after a little manipulation: 

(r - kh)F(r  - h )  
( r + k h ) F ( r ) +  1 + h 2 F ( r - h )  = 2 r ( V ( r ) - E ) .  

In (19), k = 1 + 1 and V ( r )  is the 'raw' potential with no centrifugal term. The I value is 
completely taken care of by the terms on the left of (19). This feature is particularly 
useful for the +b2(0) calculation, since for our charmonium problem we have 

E ( D  V )  = Er-2 + EAMrM-'. (20 )  
The first term on the right of (20 )  is the derivative of the Coulomb potential, but 
resembles a centrifugal term for which E = 31(1+ l ) ,  so that I + 2~ as E + 0. 

To find ( ( D  V ) )  using (17), for an s state, we use the value k = 2~ + 1 in (19) (i.e. use a 
'pseudo-angular momentum' I = 2 ~ ) .  This takes care of the r-2 term in (20) .  The 
second term can be added explicitly to V or we can use an 'advanced potential' term, so 
that the potential becomes 

V = -r-' + A  (r  + E ) ~ .  (21) 
By using the pseudo-angular momentum and the advanced potential devices together, 
we can render the calculation particularly simple for a computer, since a program can be 
written to make the adjustments automatically when E is given as part of the input data. 
Using two values * E  we can estimate ( ( D V ) )  from the prescription (17). 

It should be clear from the above discussion that the method will work for any 
smooth potential V ( r ) ,  not just the one of equation (4). The equation (19) has the 
interesting feature that if we start the integration from r = kh we can specify F ( k h  - h )  
arbitrarily; the calculation automatically forces F ( k h  + h ) ,  F ( k h  + 2h) ,  etc, to take 
definite values. However, these values will depend on the E value which we use on the 
right of (19). The CBM Pet minicomputer program which we have devised uses three 
trial E values simultaneously (setting q5(kh) = 1); at large r values it interpolates to find 
the E value which would have made the wavefunction tend to zero (i.e. which would 
have given a bound-state function). These ideas have been explained in previous works 
(Killingbeck 1977, 1979b). The E value obtained using (19) in this way is not the 
required Schrodinger equation eigenvalue, since it is arrived at by using a difference 
equation involving a finite strip width h. The eigenvalue associated with ct;;p width h is 
related to the true eigenvalue by a perturbation-type expansion: 

E ( h ) = E + A h 2 + B h 4 + .  . . . (22 )  
To get E we do the calculation using several different strip widths, arid extrapolate, 
rather in the manner of Romberg integration. For the potential of equation (4), for 
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example, we get ground-state eigenvalues accurate to about 1 part in lo9 by using the 
values h = H, 2H, 3H, 4H (with H = 0.025) and the extrapolation formula 

E =&(56E1-28E2+8E3-E4). (23) 
For the case of potentials without a Coulombic term (e.g. simple rM potentials) the 
method could be improved to suppress the Ah2 error term in (22), by using the 
Numerov method or the more simple method of Killingbeck (1979b). 

The methods outlined above work just as easily for excited states (of any 1 value) as 
they do for the ground state. The orthogonality of different eigenstates, which causes 
problems in variational approaches, does not play a role. The node number (2) is the 
quantity specified and this serves to pick out any required excited state; the numerical 
integration based on (19) is simply repeated until two trial E values lead to functions 
with 2 and 2 - 1 nodes, respectively. The required eigenvalue E ( h )  for that state must 
then be straddled by the two trial values. These details are handled automatically by the 
program, and have also been discussed previously (Killingbeck 1979b, 1980). Killing- 
beck (1980) also indicates briefly how a variational calculation could be set up using the 
basis states rNi,bO, where i,bo is the ground-state eigenfunction; for potentials of type rM 
such a calculation should be quite effective (since it gives exact results for M = 2). 

5. Some test calculations 

Since in the charmonium problem it is usual to take the 'gluon' coefficient to be small, 
our results are most likely to be useful if we take the 'zero gluon' limit, i.e. use a 
potential A r M  in (4). With this restriction we can do the calculations for A = 1 and get 
results for any other A by simple scaling, so that our tabulated results will achieve some 
degree of universality. By calculating (r'-') we can find i,b'(O) from (10); by calculating 
( I - ' )  we can estimate the first-order effect of introducing a weak gluon term. The values 
of E and ( r M )  are rigorously related by the virial theorem: E = i (M+2)(rM) .  This 
allows a check on the independent method of calculating ( r M )  from equation (17). 
Although the direct approach of Kaushal and Muller-Kirsten did not work very well, it 
turns out that a direct approach can be made to work fairly well if it is used in 
conjunction with numerical integration of the Schrodinger equation. For example, 
while integrating the Schrodinger equation using (19) we can also work out integrals of 
the type 

I ( N )  = J 4 ' (r )rN dr (24) 

by integrating up to the node in 4 ( r ) ,  using a very good eigenvalue (Killingbeck 1979b). 
The I (2)  value gives the normalisation constant and thus a direct i,b2(0) estimate; the 
ratio 1(4)/1(2) gives a value for (r').  The results for the various test potentials of this 
work show that values of ( r )  and (r') obtained by this direct method are accurate to 
roughly 1 part in lo5, which is good enough for many applications. The use of the 
indirect approach based on equation (17), however, was found to yield more accurate 
results for quantities such as ( r - ' ) ,  (r-') and ((DV)). Table 4 shows some results for s 
states. 

Some workers on the charmonium problem have used potentials made up of several 
different r N  terms; we would like to suggest the potential 

V = 2Ar f 2A'r' (25)  
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Table 4. Results for the lowest three s states (V  = r M ) t .  

E 1.855 757 09 
( 4  1.237 171 
( r 2 )  1,836 712 M = l  

( r - ?  1,051 866 

E 2.121 320 34 
( I )  0,948 850 
( r 2 )  1,060 660 M = 2  

( r - ?  1.341 877 

E 2.276 522 38 
( 4  0.842 919 
(2) 0.827 677 

1.491 243 

M = 3  

3.244 607 63 
2,163 072 3.591 076 
5.614 655 15.474 99 
0,733 486 0.512 970 

4.949 747 47 
1.423 275 1.779 094 
2.474 874 3.889 087 
1.118 230 0.995 225 

6.282 227 60 
1,143 043 1.363 334 
1.617 848 2.322 209 
1.392 730 1.309 490 

5.386 613 78 

7.778 174 59 

10.799 758 2 

t Using H = 0.025 for the energies and E = 0.02, 0.04 for the ( r N ) .  

as a useful test potential for any proposed method of attacking the problem. For A > 0 
the insertion of (25) in (3) leads to the exact ground-state eigenvalue --;+ 3A, with the 
eigenfunction R = r exp[-r-Ar2]. Table 5 shows exact results for this potential (with 
A = 1) together with results obtained using the methods proposed in this work. The 
results illustrate clearly the accuracy of our methods for charmonium-type potentials. 

Table 5. Results for V = 2r + 2r2. 

E ( 4  ( r 2 )  (2(D VI) 

5 0.605 862 89 0.447 068 56 25.693 806 Exact z 
Integration t 2,500 000 000 0.605 867 0.447 072 24.960 17 
E method 0.605 863f 0.447 069$ 25,693 806 

t Integration up to the node, as explained in text. 
f Using E = 0.04 and 0.08. 
§ Using E = 0.002 and 0.004. 

6. Conclusion 

The methods described in this work can be seen to give accurate values for energies, 
( r N )  values and +h2(O) values. The basic principle involved is that of reducing the 
calculation of any required quantity to the calculation of energy eigenvalues, so that the 
calculational problem is rendered as simple as possible. Both the approaches of 88 3 
and 4 have the feature that the wavefunction plays a relatively minor role in the 
proceedings, so that they belong to the same general category as the WKB methods of 
Froman (1978a, b). In principle, the ‘diagonal problem’ (i.e. the calculation of expec- 
tation values) has now been handled, but there still remains the ‘off -diagonal’ problem 
(e.g. can we find ($olrlq+l), using only algebra plus eigenvalue calculations, when and 

are different eigenfunctiocs?). A WKB approach to the problem has been outlined 
by Froman and Froman (1977). We suspect that the problem of adapting the more 
accurate numerical integration method for the ‘off -diagonal’ case may be solvable by 
using off-diagonal hypervirial relations (Hughes 1977, Banerjee 1977) together with 
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sum rules (Tipping 1976). To allow for boundary term effects, as illustrated by equation 
(13) of this work, however, it may be necessary to modify the usual double commutator 
approach to the derivation of off -diagonal hypervirial relations, at least for s states. 
Preliminary work suggests that the simplest first-principles approach is to work out 
directly the off -diagonal matrix element of the fourth derivative of a smooth function 
f ( r ) ;  this leads to s-state results such as 

(RoI(DV)IRd = (El -Eo)’(RolrlRi) +&Ro(O)DRi(O) (26 )  

which have an extra term not obtained by the usual approach. We hope that these 
comments will stimulate other workers in the field to study the ‘off -diagonal’ problem. 
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